text

by apryse

January 8, 2026

RELEASE NOTES

This is a special iText PDF

As per usual, we have decided to create a PDF file that showcases a lot of what is possible
with iText by Apryse.

This is no ordinary PDF, as it is PDF/UA-2 and PDF/A-4F compliant, created with the help
of pdfHTML.

You can read more about it below.

) itext | 2026

by apryse
e Release Notes

https://itextpdf.com/
https://itextpdf.com/blog/itext-news/pdfua-2-introducing-new-pdf-accessibility-standard
https://kb.itextpdf.com/itext/itext-8-0-2-delivers-pdf-a-4-support
https://itextpdf.com/products/convert-html-css-to-pdf-pdfhtml

Table of Contents

Release iText Core 9.5.0
Release date: Jan 8th 2026
Support for Brotli Compressed PDF Streams
Post-Quantum-Safe Digital Signature Algorithm Support
PAdES Signature Profiles
Pull Requests
Bug Fixes and Miscellaneous
Other Stuff
iText Suite 9.5 Releases
Downloads
Changelog
New features
Improvements
Bug Fixes
Deprecation of Older iText Versions
Contributors
eBooks
Installation Instructions
Examples (latest ones)
FAQ (latest ones)
Features of this PDF

O O 00 00 |00 |00 N N o [U [I W W W

—

—
—

— [— |-
NS N N

—
W

) itext | 2026

by apryse
e Release Notes

Release iText Core 9.5.0

As always, we've made the Core release notes into a showcase PDF document. Not only does
it conform to the latest PDF/UA-2 standard for accessible PDF documents, it's also digitally
signed and has source code and resources required to recreate the document yourself
embedded. Have fun!

In this first iText Core release of 2026 we're focusing on upcoming additions to the PDF
specification; specifically adding support for Brotli-compressed PDF streams, and post-quantum-
safe algorithms for digital signing.

The validation of PAdES signature profiles has been improved to detect Document Security Store
changes between revisions.

In addition, there are various improvements and fixes across the core modules. See below for
more details.

Support for Brotli Compressed PDF Streams

The Flate/Deflate compression method was first introduced in version 1.2 of the PDF
specification back in 1996. Based on zlib, it has served well though is rather long in the tooth
these days. With that in mind, the PDF Association plans to add support for the modern Brotli
compression standard to the PDF specification in the near future. As befits our position in the
industry, we're introducing Brotli support to iText now rather than later.

In this release we've added proof-of-concept support for reading and writing PDFs that use
Brotli compression, including a new filter handler and corresponding high-level API hooks.

For now at least, you should consider this feature experimental, since current support for Brotli-
compressed PDFs in other software is scarce. Even after it becomes part of the official
specification it will take some time for the majority of PDF viewers and browsers to support such
documents. As always with new standards and technology, however, it's important for iText
along with other major PDF vendors to adopt and popularize them as soon as possible.

) itext | 2026

by apryse
e Release Notes

https://pdfa.org/understanding-brotli-pdf-compression/

For those brave souls who wish to proceed, the new brotli-compressor module is only available
from our artifactory, for now. See the README for more details on its usage and configuration.

Post-Quantum-Safe Digital Signature Algorithm Support

Once again, this is one for the future; albeit a rather more uncertain one. Quantum computers
are beginning to step outside of the purely theoretical world, and with them comes the dangers
of Q-Day. That is, the day when a quantum computer could conceivably instantly render existing
means of encryption obsolete.

Fortunately, some extremely clever boffins have been aware of the dangers for some time, and
a variety of encryption algorithms has been developed to counter quantum-based attacks.
Thanks to the venerable Bouncy Castle cryptographic modules used by iText, we have
implemented POC support for the Post-Quantum algorithms supported by Bouncy Castle.

Again, official support in the PDF specification will be coming soon and so it's time for us to

implement support in iText. However, it should be noted that these are not yet supported in
FIPS mode, as the official PQC-safe algorithms for FIPS are still to be defined. Once PQC-safe
FIPS mode is possible, you can be sure iText will be at the forefront of PDF implementations.

PAdES Signature Profiles

We've made further headway into making digital signatures easier with preset PAdES signature
profiles. The PAJES profile validation is improved and can detect when the Document Security
Store (DSS) changes between revisions. It will emit a TimestampsAfterDSSEvent when appropriate,
improving timestamp validation accuracy.

Also in this release you'll find new samples for the Ukraine and Moldova trusted lists which are
available from the European Commission's eIDAS Dashboard site.

) itext | 2026

by apryse
e Release Notes

https://github.com/itext/itext-java/blob/develop/brotli-compressor/README.md
https://www.bouncycastle.org/documentation/specification_interoperability/#Post-Quantum-Algorithm-Support
https://pdfa.org/pdf-industry-embraces-post-quantum-cryptography-to-secure-digital-signatures/
https://eidas.ec.europa.eu/efda/trust-services/browse/tc-tls

Pull Requests

For this release we want to thank dajoropo for their contribution to improve error handling
when an attempt to create a PDF from a TIFF image fails. Now, iText Core will include the
original exception to assist in diagnosing why the error occurred.

Bug Fixes and Miscellaneous

We have introduced a common, cross-platform JSON AST and converters to serialize/deserialize
between Java/C# objects and a unified JSON representation, improving maintainability and
GraalVM/AQOT support.

Support for East Asian (Japanese) line-breaking rules in the layout module was added to avoid
orphan punctuation at the beginning of lines, improving typography for Japanese text.

We also investigated and resolved an issue with form filling and flattening introduced after
version 9.0.0, after a customer reported a regression in performance.

A bug in calculating the maximum number of XRef elements was fixed, avoiding potential
overflow issues in large documents.

We fixed an issue preventing OCG layers from being added, modified, or removed in append
mode was fixed, including when no prior OCG layers existed.

We also fixed the handling of unencrypted metadata in encrypted documents by aligning
decryption logic with encryption dictionary flags (AES-256 vs AES-GCM behavior), and clarified
how metadata is treated on creation.

A bug when validating a PDF signature was resolved, where iText did not use OCSP/CRL
responses that were added to the document’s DSS in a non-timestamped revision.

For Java, the robustness of structure tree handling after document merges was improved by
detecting invalid /structParent indices and logging appropriate warnings instead of throwing

NullPointerExceptions.

) itext | 2026

by apryse
e Release Notes

https://github.com/dajoropo
https://github.com/itext/itext-java/pull/266

Other Stuff

If you use iText for digital signing, you may be interested in the Digital Signatures Hub which
contains a ton of useful resources and examples.

Don't forget that in addition to the resources on our Knowledge Base, on our GitHub you can
find a ton of useful up-to-date samples in the following repos:

Java

https://github.com/itext/itext-publications-examples-java
https://github.com/itext/itext-publications-book-java
https://github.com/itext/itext-publications-signing-examples-java
https://github.com/itext/itext-publications-signatures-java
https://github.com/itext/itext-publications-highlevel-java
https://github.com/itext/itext-publications-jumpstart-java

NET

https://qithub.com/itext/itext-publications-samples-dotnet

If you want to create ZUGFeRD/Factur-X-e-invoices with iText Core, we have both Java and
.NET code samples available targeting the current ZUGFeRD/Factur-X specification. They
demonstrate how to embed the XML invoice data and add the metadata required for
conformance. Read this article to learn more about ZUGFeRD/Factur-X, and using these code
samples to create EN 16931-compatible e-invoices.

Bear in mind that our master branch contains samples for the current stable release, while the
default develop branch is for the bleeding edge commits towards the next release.

Also, don't forget to check out the release-related examples below, as well as the updated Core
add-ons in the jText Suite we've released this time:

) itext | 2026

by apryse
e Release Notes

https://kb.itextpdf.com/itext/digital-signatures-hub
https://github.com/itext/
https://github.com/itext/itext-publications-examples-java
https://github.com/itext/itext-publications-book-java
https://github.com/itext/itext-publications-signing-examples-java
https://github.com/itext/itext-publications-signatures-java
https://github.com/itext/itext-publications-highlevel-java
https://github.com/itext/itext-publications-jumpstart-java
https://github.com/itext/itext-publications-samples-dotnet
https://github.com/itext/itext-publications-examples-java/blob/develop/src/main/java/com/itextpdf/samples/sandbox/zugferd/BasicSample.java
https://github.com/itext/itext-publications-samples-dotnet/blob/develop/itext/itext.samples/itext/samples/sandbox/zugferd/BasicSample.cs
https://itextpdf.com/blog/technical-notes/creating-zugferd-itext
https://itextpdf.com/products/itext-suite

iText Suite 9.5 Releases

Release pdfCalligraph 5.0.5
Release pdfHTML 6.3.1
Release pdfOCR 4.1.2
Release pdfOptimizer 4.1.2
Release pdfSweep 5.0.5
Release pdfXFA 5.0.5

Downloads
GitHub Maven NuGet Artifactory
iText Core - 9.5.0 (Java) link link N/A link
iText Core - 9.5.0 (.NET) link N/A link link

) itext | 2026

by apryse
e Release Notes

https://kb.itextpdf.com/itext/release-pdfcalligraph-5-0-5
https://kb.itextpdf.com/itext/release-pdfhtml-6-3-1
https://kb.itextpdf.com/itext/release-pdfocr-4-1-2
https://kb.itextpdf.com/itext/release-pdfoptimizer-4-1-2
https://kb.itextpdf.com/itext/release-pdfsweep-5-0-5
https://kb.itextpdf.com/itext/release-pdfxfa-5-0-5
https://github.com/itext/
https://mvnrepository.com/artifact/com.itextpdf
https://www.nuget.org/profiles/iText
https://repo.itextsupport.com/webapp/#/artifacts/browse/tree/General/
https://itextpdf.com/products/itext-core
https://api.itextpdf.com/iText/java/9.5.0/
https://github.com/itext/itext-java/releases/tag/9.5.0
https://central.sonatype.com/artifact/com.itextpdf/itext-core/9.5.0?smo=true
https://repo.itextsupport.com/ui/repos/tree/General/releases/com/itextpdf/itext-core/9.5.0
https://itextpdf.com/products/itext-core
https://api.itextpdf.com/iText/dotnet/9.5.0/
https://github.com/itext/itext-dotnet/releases/tag/9.5.0
https://www.nuget.org/packages/itext/9.5.0
https://repo.itextsupport.com/ui/repos/tree/General/nuget/itext/itext.9.5.0.nupkg

Changelog
New features

* DEVSIX-9471 - Implement POC with Bouncy Castle for Post-Quantum algorithms
* DEVSIX-9578 - Brotli compression POC (reading/writing Brotli-compressed PDFs).
* DEVSIX-9587 - Brotli compression/decompression test coverage.

* DEVSIX-9594 - Update embedded Brotli decoder (Google upstream).

* DEVSIX-9608 - GraalVM support for Brotli compressor.

* DEVSIX-9531 - Samples for Ukraine and Moldova trusted lists

* DEVSIX-8978 - Japanese line-breaking rules.

Improvements

* DEVSIX-9567 - Correct handling of unencrypted metadata in encrypted PDFs.

* DEVSIX-9599 - Unified output-stream “finish” API and encryption handling.

* DEVSIX-9405 - Preserve original exceptions for TIFF image errors.

* DEVSIX-9641 - Prevent endless recursion in digital signature validation.

* DEVSIX-9616 - Extended PAdES integration test suite.

* DEVSIX-9610 - Improved DSS change detection and timestamp validation (PAdES).
* DEVSIX-9602 - Tests for modern/post-quantum signing algorithms.

* DEVSIX-9600 - Compare PAdES validation with eSigDSS.

* DEVSIX-9636 - Forms filling performance regression resolved.

* DEVSIX-9036 - Update VeraPDF model (PDF/UA validation).

Bug Fixes

* DEVSIX-9623 - CalculateMaxElementsInXref casting from long to int
* DEVSIX-9597 - OCG layers can't be added in append mode

0 tEXt 2026

Release Notes

* DEVSIX-9586 - Infinite layout loop in list + keep-together scenario.

* DEVSIX-9637 - NullReferenceException with nested tables and keep-together.

» DEVSIX-6486 - Stricter validation of transformation matrix length.

* DEVSIX-9623 - Fix casting when computing max XRef elements.

* DEVSIX-9179 - More robust structure trees after merges (avoid NPEs).

* DEVSIX-9525 - Use OCSP/CRL responses from the latest revision of the document

Deprecation of Older iText Versions

We're taking this opportunity to announce End of Life dates for deprecated iText versions. EOL
for iText 7.1 was April 2025, and iText 7.2 was October 2025. As for iText 8.0, this will reach EOL
in October 2026.

EOL for these versions means they will transition to maintenance mode, and only receive
security patches. However, just as with iText 5 we will continue to provide support for our
customers. Even though iText 5 has been in maintenance mode since 2016, we regularly
release new versions to address CVEs and other security-related bugfixes. See CVEs or the
iText 5-specific CVEs page for more information.

) itext | 2026

by apryse
e Release Notes

https://kb.itextpdf.com/itext/cves
https://kb.itextpdf.com/it5kb/cves

Contributors

We'd like to shout out the following contributors for this release:

* Product / Marketing

* Core team * André Lemos

+ Eugene Bochilo * lan Morris

« Dmitry Chubrick * Infrastructure / Devops
* Angelina Pavlovets * Marco Andries
* Alexandr Pliushchou * Yauheni Borbut

* Vitali Prudnikovich
* Dmitry Radchuk
* Andrei Stryhelski

* Research

* Michaél Demey

* Vlad Lipskiy
* Nanou Persoons
« Glenn Volckaert * Input from other teams
* Alexandr Fedorov * Rainer Plockl
* Guust Ysebie * Alison Anderson
* Yulian Gaponenko * Input from outside
* RafHens * Michael Klink
* Matthias Valvekens
©) itext | 2026

by apryse

Release Notes

https://github.com/GrimySoal
https://github.com/introfog
https://github.com/AnhelinaM
https://github.com/aapsasha
https://github.com/vitali-pr
https://github.com/denighte
https://github.com/StryhelskiAndrei
https://github.com/nanouh
https://github.com/glenner003
https://github.com/aleksf16
https://github.com/guustysebie
https://github.com/yulian-gaponenko
https://github.com/rhens
https://github.com/avlemos
https://github.com/LionelRichTea
https://github.com/marcoandries
https://github.com/EvgenyB1001
https://github.com/michaeldemey
https://github.com/Eswcvlad
https://github.com/rploeckl
https://github.com/AlisonPAnderson
https://github.com/mkl-public
https://github.com/MatthiasValvekens

eBooks

Blockchain for PDF Documents

iText: Jump-Start Tutorial for .NET

iText: Jump-Start Tutorial for Java

iText: Converting HTML to PDF with pdfHTML
iText: Building Blocks

Best iText 7 Questions on StackOverflow

Installation Instructions

Installing iText for Java
Installing iText for .NET
Installing iText Community for Java developers
Installing iText Community for .NET developers

Examples (latest ones)

Refactored PDF Conformance Architecture
PAdES Signing High Level API

iText Core: Signature Appearance Improvements
iText 8.0.2 Delivers PDF/A-4 Support

High-level Annotation Flattening

) itext | 2026

by apryse
e Release Notes

https://kb.itextpdf.com/itext/blockchain-for-pdf-documents
https://kb.itextpdf.com/itext/itext-jump-start-tutorial-for-net
https://kb.itextpdf.com/itext/itext-jump-start-tutorial-for-java
https://kb.itextpdf.com/itext/itext-7-converting-html-to-pdf-with-pdfhtml
https://kb.itextpdf.com/itext/itext-7-building-blocks
https://kb.itextpdf.com/itext/best-itext-7-questions-on-stackoverflow
https://kb.itextpdf.com/itext/installing-itext-for-java
https://kb.itextpdf.com/itext/installing-itext-for-net
https://kb.itextpdf.com/itext/installing-itext-community-for-java-developers
https://kb.itextpdf.com/itext/installing-itext-community-for-net-developers
https://kb.itextpdf.com/itext/refactored-pdf-conformance-architecture
https://kb.itextpdf.com/itext/pades-signing-high-level-api
https://kb.itextpdf.com/itext/itext-core-signature-appearance-improvements
https://kb.itextpdf.com/itext/itext-8-0-2-delivers-pdf-a-4-support
https://kb.itextpdf.com/itext/high-level-annotation-flattening

FAQ (latest ones)

How to decrypt a PDF document with the owner password?
How to encrypt PDF using a certificate?

How to enable LTV for a timestamp signature?

Why isn't the Rupee symbol showing?

How do I install iText Core?

) itext | 2026

by apryse
e Release Notes

12

https://kb.itextpdf.com/itext/how-to-decrypt-a-pdf-document-with-the-owner-passw
https://kb.itextpdf.com/itext/how-to-encrypt-pdf-using-a-certificate
https://kb.itextpdf.com/itext/how-to-enable-ltv-for-a-timestamp-signature
https://kb.itextpdf.com/itext/why-isn-t-the-rupee-symbol-showing
https://kb.itextpdf.com/itext/how-do-i-install-itext-7-core

Features of this PDF

. Used pdfHTML to generate the PDF content (the HTML content is attached)
« Itis both PDF/A-4f and PDF/UA-2 compliant (making it also a WTPDF)

* Thereis a MAC protected (AES 256 Encryted, SHA 256 Protected. Password is
'itext") version of this PDF attached (had to be separate, as PDF/A-4 does not
allow it)

. Digitally signed using a Portuguese Identity Card (scroll below to check the code
on how to validate it!)

« The mainlogo is generated using iText's custom SVG rendering engine

. Dynamically generated table of contents and bookmarks

. Creatively used Layers to toggle between Java and .NET code below
. Automatic Pagination by using our Events engine

. Fonts were subsetted for a smaller file size

To run the project (using .NET 8), just check the instructions on the attached file README.md.

Signed off by:

Digitally signed by ANDRE
VENTURA LEMOS
/ %j/y Date: 2026.01.08 17:46:04
4/%@“ /‘(Jm M 401:00
v Reason: Release notes for iText
9.5.0
Location: Ghent (Belgium)

Generated by: Content: lan Morris Source code: Guust Ysebie

G ,te.,Xt 2026

Release Notes 13

https://itextpdf.com/products/convert-html-css-to-pdf-pdfhtml
https://itextpdf.com/profiles/team/ian-morris
https://github.com/guustysebie

Addendum: Verify the signature using iText (Java)

package com.itextpdf.samples.sandbox.signatures.validation;

import
import
import
import
import
import
import
import
import
import

import
import

public

com.
com.
.itextpdf.signatures.validation.SignatureValidator;
com.
.itextpdf.signatures.validation.lotl.LotlCountryCodeConstants;
com.
.itextpdf.signatures.validation.lotl.LotlService;

com

com

com

com.
.itextpdf.signatures.validation.lotl.RemoveOnFailingCountryData;
com.

com

itextpdf.kernel.pdf.PdfDocument;
itextpdf.kernel.pdf.PdfReader;

itextpdf.signatures.validation.ValidatorChainBuilder;
itextpdf.signatures.validation.lotl.LotlFetchingProperties;
itextpdf.signatures.validation.lotl.QualifiedValidator;

itextpdf.signatures.validation.report.ValidationReport;

java.io.IOException;
java.util.Map;

class LotlSimpleSignatureValidation {

public static final String SRC = "./src/main/resources/pdfs"

+ "/super_official_document_signed.pdf";

public static void main(String[] args) throws IOException {

ValidatorChainBuilder builder = new ValidatorChainBuilder();

builder.trustEuropeanLotl(true);

LotlFetchingProperties fetchingProperties = new LotlFetchingProperties(
new RemoveOnFailingCountryData());

fetchingProperties.setCountryNames (LotlCountryCodeConstants.PORTUGAL) ;
LotlService.initializeGlobalCache(fetchingProperties);

QualifiedValidator qualifiedValidator = new QualifiedValidatoxr();
builder.withQualifiedValidator(qualifiedValidator);

try (PdfDocument document = new PdfDocument(new PdfReader(SRC))) {
SignatureValidator validator = builder.buildSignatureValidator(document);
ValidationReport report = validator.validateSignatures();

Map<String, QualifiedValidator.QualificationValidationData> result =
qualifiedValidator.obtainAllSignaturesValidationResults();
} catch (IOException e) {
throw new RuntimeException(e);
}

0 text | 2026

Release Notes

	Table of Contents
	Release iText Core 9.5.0
	Release date: Jan 8th 2026
	Support for Brotli Compressed PDF Streams
	Post-Quantum-Safe Digital Signature Algorithm Support
	PAdES Signature Profiles
	Pull Requests
	Bug Fixes and Miscellaneous
	Other Stuff
	iText Suite 9.5 Releases
	Downloads
	Changelog
	New features
	Improvements
	Bug Fixes

	Deprecation of Older iText Versions
	Contributors
	eBooks
	Installation Instructions
	Examples (latest ones)
	FAQ (latest ones)

	Features of this PDF

How to run this project from source code.

1. `cd` to `ReleaseNotesGenerator/resources`

2. Change the url in the `wget-download-command.sh` script to the desired version

3. execute this script `./wget-download-command.sh`

4. Change back again to the folder where `ReleaseNotesGenerator.csproj` is located

4. Run with `dotnet run`

How to recreate the pdf with from the PDF document.

1. Extract the embedded `source-code.zipx` (This is just a zip file but some pdf processors don't allow downloading of

 those)

2. Change file name to `source-code.zip`

3. Extract zip archive

4. Follow the steps from `How to run this project from source code.`


```text

    sourcecode //source folder

        README.md //file

        ReleaseNotesGenerator //folder

            Program.cs //file

```


2. Execute steps from `run this project from source code`

verapdf verification for PDF/UA2 and PDF/A4


```xml

<report>

  <buildInformation>

    <releaseDetails id="core" version="1.26.5" buildDate="2025-01-10T12:08:00+03:00"></releaseDetails>

    <releaseDetails id="validation-model" version="1.26.5" buildDate="2025-01-10T12:10:00+03:00"></releaseDetails>

    <releaseDetails id="gui" version="1.26.5" buildDate="2025-01-10T12:43:00+03:00"></releaseDetails>

  </buildInformation>

  <jobs>

    <job>

      <item size="5118296">

        <name>C:\Users\Admin\Downloads\release_notes_9.1.0.pdf</name>

      </item>

      <validationReport jobEndStatus="normal" profileName="PDF/UA-2 + Tagged PDF validation profile" statement="PDF file is compliant with Validation Profile requirements." isCompliant="true">

        <details passedRules="1744" failedRules="0" passedChecks="103506" failedChecks="0"></details>

      </validationReport>

      <duration start="1739801507219" finish="1739801507760">00:00:00.541</duration>

    </job>

  </jobs>

  <batchSummary totalJobs="1" failedToParse="0" encrypted="0" outOfMemory="0" veraExceptions="0">

    <validationReports compliant="1" nonCompliant="0" failedJobs="0">1</validationReports>

    <featureReports failedJobs="0">0</featureReports>

    <repairReports failedJobs="0">0</repairReports>

    <duration start="1739801507215" finish="1739801507768">00:00:00.553</duration>

  </batchSummary>

</report>

```



```xml

<report>

  <buildInformation>

    <releaseDetails id="core" version="1.26.5" buildDate="2025-01-10T12:08:00+03:00"></releaseDetails>

    <releaseDetails id="validation-model" version="1.26.5" buildDate="2025-01-10T12:10:00+03:00"></releaseDetails>

    <releaseDetails id="gui" version="1.26.5" buildDate="2025-01-10T12:43:00+03:00"></releaseDetails>

  </buildInformation>

  <jobs>

    <job>

      <item size="5118296">

        <name>C:\Users\Admin\Downloads\release_notes_9.1.0.pdf</name>

      </item>

      <validationReport jobEndStatus="normal" profileName="PDF/A-4F validation profile" statement="PDF file is compliant with Validation Profile requirements." isCompliant="true">

        <details passedRules="108" failedRules="0" passedChecks="47741" failedChecks="0"></details>

      </validationReport>

      <duration start="1739801551782" finish="1739801552127">00:00:00.345</duration>

    </job>

  </jobs>

  <batchSummary totalJobs="1" failedToParse="0" encrypted="0" outOfMemory="0" veraExceptions="0">

    <validationReports compliant="1" nonCompliant="0" failedJobs="0">1</validationReports>

    <featureReports failedJobs="0">0</featureReports>

    <repairReports failedJobs="0">0</repairReports>

    <duration start="1739801551778" finish="1739801552145">00:00:00.367</duration>

  </batchSummary>

</report>

```


nuget.config

README.md

How to run this project from source code.

1. `cd` to `ReleaseNotesGenerator/resources`

2. Change the url in the `wget-download-command.sh` script to the desired version

3. execute this script `./wget-download-command.sh`

4. Change back again to the folder where `ReleaseNotesGenerator.csproj` is located

4. Run with `dotnet run`

How to recreate the pdf with from the PDF document.

1. Extract the embedded `source-code.zipx` (This is just a zip file but some pdf processors don't allow downloading of

 those)

2. Change file name to `source-code.zip`

3. Extract zip archive

4. Follow the steps from `How to run this project from source code.`


```text

    sourcecode //source folder

        README.md //file

        ReleaseNotesGenerator //folder

            Program.cs //file

```


2. Execute steps from `run this project from source code`

verapdf verification for PDF/UA2 and PDF/A4


```xml

<report>

  <buildInformation>

    <releaseDetails id="core" version="1.26.5" buildDate="2025-01-10T12:08:00+03:00"></releaseDetails>

    <releaseDetails id="validation-model" version="1.26.5" buildDate="2025-01-10T12:10:00+03:00"></releaseDetails>

    <releaseDetails id="gui" version="1.26.5" buildDate="2025-01-10T12:43:00+03:00"></releaseDetails>

  </buildInformation>

  <jobs>

    <job>

      <item size="5118296">

        <name>C:\Users\Admin\Downloads\release_notes_9.1.0.pdf</name>

      </item>

      <validationReport jobEndStatus="normal" profileName="PDF/UA-2 + Tagged PDF validation profile" statement="PDF file is compliant with Validation Profile requirements." isCompliant="true">

        <details passedRules="1744" failedRules="0" passedChecks="103506" failedChecks="0"></details>

      </validationReport>

      <duration start="1739801507219" finish="1739801507760">00:00:00.541</duration>

    </job>

  </jobs>

  <batchSummary totalJobs="1" failedToParse="0" encrypted="0" outOfMemory="0" veraExceptions="0">

    <validationReports compliant="1" nonCompliant="0" failedJobs="0">1</validationReports>

    <featureReports failedJobs="0">0</featureReports>

    <repairReports failedJobs="0">0</repairReports>

    <duration start="1739801507215" finish="1739801507768">00:00:00.553</duration>

  </batchSummary>

</report>

```



```xml

<report>

  <buildInformation>

    <releaseDetails id="core" version="1.26.5" buildDate="2025-01-10T12:08:00+03:00"></releaseDetails>

    <releaseDetails id="validation-model" version="1.26.5" buildDate="2025-01-10T12:10:00+03:00"></releaseDetails>

    <releaseDetails id="gui" version="1.26.5" buildDate="2025-01-10T12:43:00+03:00"></releaseDetails>

  </buildInformation>

  <jobs>

    <job>

      <item size="5118296">

        <name>C:\Users\Admin\Downloads\release_notes_9.1.0.pdf</name>

      </item>

      <validationReport jobEndStatus="normal" profileName="PDF/A-4F validation profile" statement="PDF file is compliant with Validation Profile requirements." isCompliant="true">

        <details passedRules="108" failedRules="0" passedChecks="47741" failedChecks="0"></details>

      </validationReport>

      <duration start="1739801551782" finish="1739801552127">00:00:00.345</duration>

    </job>

  </jobs>

  <batchSummary totalJobs="1" failedToParse="0" encrypted="0" outOfMemory="0" veraExceptions="0">

    <validationReports compliant="1" nonCompliant="0" failedJobs="0">1</validationReports>

    <featureReports failedJobs="0">0</featureReports>

    <repairReports failedJobs="0">0</repairReports>

    <duration start="1739801551778" finish="1739801552145">00:00:00.367</duration>

  </batchSummary>

</report>

```


ReleaseNotesGenerator.sln

Microsoft Visual Studio Solution File, Format Version 12.00

Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "ReleaseNotesGenerator", "ReleaseNotesGenerator\ReleaseNotesGenerator.csproj", "{1EB8DF15-0E3D-418D-8FB7-58909DF6538F}"

EndProject

Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "ValidationExample", "ValidationExample\ValidationExample.csproj", "{6F64E3FF-4F72-471E-AC8F-20938E6A2EA1}"

EndProject

Global

	GlobalSection(SolutionConfigurationPlatforms) = preSolution

		Debug|Any CPU = Debug|Any CPU

		Release|Any CPU = Release|Any CPU

	EndGlobalSection

	GlobalSection(ProjectConfigurationPlatforms) = postSolution

		{1EB8DF15-0E3D-418D-8FB7-58909DF6538F}.Debug|Any CPU.ActiveCfg = Debug|Any CPU

		{1EB8DF15-0E3D-418D-8FB7-58909DF6538F}.Debug|Any CPU.Build.0 = Debug|Any CPU

		{1EB8DF15-0E3D-418D-8FB7-58909DF6538F}.Release|Any CPU.ActiveCfg = Release|Any CPU

		{1EB8DF15-0E3D-418D-8FB7-58909DF6538F}.Release|Any CPU.Build.0 = Release|Any CPU

		{6F64E3FF-4F72-471E-AC8F-20938E6A2EA1}.Debug|Any CPU.ActiveCfg = Debug|Any CPU

		{6F64E3FF-4F72-471E-AC8F-20938E6A2EA1}.Debug|Any CPU.Build.0 = Debug|Any CPU

		{6F64E3FF-4F72-471E-AC8F-20938E6A2EA1}.Release|Any CPU.ActiveCfg = Release|Any CPU

		{6F64E3FF-4F72-471E-AC8F-20938E6A2EA1}.Release|Any CPU.Build.0 = Release|Any CPU

	EndGlobalSection

EndGlobal

ReleaseNotesGenerator/Program.cs

using System;

using System.IO;

using System.IO.Compression;

using System.Linq;

using System.Text;

using HtmlAgilityPack;

using iText.Html2pdf;

using iText.Html2pdf.Attach.Impl;

using iText.Kernel.Font;

using iText.Kernel.Mac;

using iText.Kernel.Pdf;

using iText.Kernel.Pdf.Event;

using iText.Kernel.Pdf.Filespec;

using iText.Kernel.Validation;

using iText.Kernel.XMP;

using iText.Layout.Tagging;

using iText.Licensing.Base;

using iText.Pdfa;

using iText.Pdfua.Checkers;

using iText.StyledXmlParser.Resolver.Font;

using iText.Test.Pdfa;

using ReleaseNotesGenerator.Utils;

using Path = System.IO.Path;

namespace ReleaseNotesGenerator {

 internal static class Program {

 //Don't change these variables

 private const string ResourceDirectory = "resources";

 //You can change these variables

 private const string Version = "9.5.0";

 private const string Password = "itext";

 private static readonly string FileName = $"release_notes_{Version}.pdf";

 private const string MacProtectedName = "release_notes_mac_protected.pdf";

 private const CountrySigning CountryUsedForSigning = CountrySigning.PORTUGAL;

 private const string PageToConvert = "release-itext-core-9-5-0.html";

 private const string SigningReason = "Release notes for iText " + Version;

 private const string SigningLocation = "Ghent (Belgium)";

 private const string SignatureFieldName = "signature_id";

 static void Main(string[] args) {

 Console.WriteLine($"Generating release notes for version {Version}...");

 //Prompt the user for the license key

 string? licenseKey = null;

 while (true) {

 Console.Write("Please enter path to your iText license key:\n");

 licenseKey = Console.ReadLine();

 if (File.Exists(licenseKey)) {

 Console.WriteLine("License key file found.");

 break;

 }

 Console.WriteLine("License key file not found. Please enter a valid license key file path.");

 }

 LicenseKey.LoadLicenseFile(new FileInfo(licenseKey));

 GenerateMainPdfDocument();

 CheckPdfCompliance();

 }

 private static void GenerateMainPdfDocument() {

 var pdfDocument = CreateWtpdfDocument();

 AddMacProtectedVersion(pdfDocument);

 AddSourceCodeFiles(pdfDocument);

 GeneratePdfFromHtml(pdfDocument);

 var fileInfo = new FileInfo(FileName);

 Console.WriteLine("Generated release notes for version " + Version + " in " +

 fileInfo.FullName);

 var signPrompt = "Do you want to sign the document with a " + CountryUsedForSigning +

 " eID card? (y/n)";

 Console.WriteLine(signPrompt);

 var sign = Console.ReadLine();

 if (sign != null && sign.ToLower().Equals("y")) {

 SignDocument();

 }

 }

 private static void CheckPdfCompliance() {

 // CustomVeraPdfValidator will be removed after

 // TODO DEVSIX-9041 pdfTest: Allow specify conformance to check in VeraPdfValidator

 var result = new VeraPdfValidator().Validate(FileName);

 if (!string.IsNullOrEmpty(result)) {

 Console.WriteLine(result);

 throw new Exception("Validation failed");

 }

 }

 private static PdfDocument CreateWtpdfDocument() {

 var path = Path.Combine(Directory.GetCurrentDirectory(), ResourceDirectory, "sRGB Color Space Profile.icm");

 var outputIntent = new PdfOutputIntent(

 "Custom",

 "",

 "http://www.color.org",

 "sRGB IEC61964-2.1", File.Open(path, FileMode.Open, FileAccess.Read)

);

 var writerProperties = new WriterProperties().SetPdfVersion(PdfVersion.PDF_2_0);

 var pdfDocument = new PdfADocument(new PdfWriter(FileName, writerProperties), PdfAConformance.PDF_A_4F,

 outputIntent);

 var xmpMeta = XMPMetaFactory.Parse(File.Open(Path.Combine(ResourceDirectory, "simplePdfUA2.xmp"),

 FileMode.Open, FileAccess.Read));

 pdfDocument.GetDiContainer().Register(typeof(ProhibitedTagRelationsResolver),

 new ProhibitedTagRelationsResolver(pdfDocument));

 var container = pdfDocument.GetDiContainer().GetInstance<ValidationContainer>();

 container.AddChecker(new PdfUA2Checker(pdfDocument));

 pdfDocument.SetXmpMetadata(xmpMeta);

 pdfDocument.SetTagged();

 pdfDocument.GetCatalog().SetViewerPreferences(new PdfViewerPreferences().SetDisplayDocTitle(true));

 pdfDocument.GetCatalog().SetLang(new PdfString("en-US"));

 var info = pdfDocument.GetDocumentInfo();

 info.SetTitle("Release notes for iText " + Version);

 info.SetAuthor("iText Software");

 info.SetSubject("Release notes for iText " + Version);

 info.SetKeywords("iText, release notes, pdf");

 return pdfDocument;

 }

 private static void SignDocument() {

 var signedFileName = FileName.Replace(".pdf", "") + "-pkcs11-signed.pdf";

 new EIdSigner(ResourceDirectory, FileName, signedFileName, CountryUsedForSigning)

 .Sign(SignatureFieldName, SigningReason, SigningLocation);

 var fileInfo = new FileInfo(signedFileName);

 Console.WriteLine("Generated signed release notes for version " + Version + " in " + fileInfo.FullName);

 }

 private static void AddMacProtectedVersion(PdfDocument pdfDocument) {

 GenerateMacProtectedVersion();

 var macProtectedBytes = File.ReadAllBytes(MacProtectedName);

 const string macProtectedPdfTitle = "Release notes for iText " + Version + " (Mac protected).pdf";

 const string macProtectedPdfDescription =

 "This PDF is a protected version of the release notes for iText " +

 Version + " use the password '" + Password + "' to open it.";

 var spec = PdfFileSpec.CreateEmbeddedFileSpec(pdfDocument, macProtectedBytes, macProtectedPdfDescription,

 macProtectedPdfTitle, null, null, null);

 pdfDocument.AddFileAttachment(macProtectedPdfTitle, spec);

 }

 /// <summary>

 /// By default everything in the resources directory is added to a zip file,

 /// additionally the README.md file is added as plain attachment at base level of the pdf document so its easie

 /// to find the build instructions

 /// </summary>

 /// <param name="document"></param>

 /// <exception cref="Exception"></exception>

 private static void AddSourceCodeFiles(PdfDocument document) {

 const string sourceCodeZipFolder = "./source-code.zip";

 const string fileTitle = "source-code.zip";

 const string fileDescription = "This zip file contains the source code to recreate this pdf.";

 const string readmeTitle = "README.md";

 const string readmeDescription =

 "This is the readme file, it contains information on how to build the project";

 //remove the zip file

 if (File.Exists(sourceCodeZipFolder)) {

 File.Delete(sourceCodeZipFolder);

 }

 //If executed from the bin folder, we need to go up 4 levels to get to the project directory

 var projectDirectory =

 Directory.GetParent(Directory.GetCurrentDirectory())?.Parent?.Parent?.Parent?.FullName;

 // If executed from the project directory, have to go up 1 level

 if (projectDirectory == null) {

 projectDirectory = Directory.GetParent(Directory.GetCurrentDirectory())?.FullName;

 }

 Console.WriteLine(projectDirectory);

 using (var zip = ZipFile.Open("./source-code.zip", ZipArchiveMode.Create)) {

 if (projectDirectory == null) {

 throw new Exception("Could not find the project directory");

 }

 StructuredZipFolderBuilder.StructuredZip(zip, projectDirectory);

 }

 var readmeMd = File.ReadAllBytes(Path.Combine(projectDirectory, "README.md"));

 var readmeSpec = PdfFileSpec.CreateEmbeddedFileSpec(document, readmeMd, readmeDescription, readmeTitle,

 null, null, null);

 document.AddFileAttachment("README.md", readmeSpec);

 var fileBytes = File.ReadAllBytes(sourceCodeZipFolder);

 var spec = PdfFileSpec.CreateEmbeddedFileSpec(document, fileBytes, fileDescription, fileTitle + "x", null,

 null, PdfName.Data);

 document.AddFileAttachment(fileTitle, spec);

 }

 private static void GenerateMacProtectedVersion() {

 var passWordBytes = Encoding.UTF8.GetBytes(Password);

 var writerProperties = new WriterProperties().SetPdfVersion(PdfVersion.PDF_2_0)

 .SetStandardEncryption(passWordBytes, passWordBytes, 0,

 EncryptionConstants.ENCRYPTION_AES_256,

 new MacProperties(MacProperties.MacDigestAlgorithm.SHA_256));

 var pdfDocument = new PdfDocument(new PdfWriter(MacProtectedName, writerProperties));

 GeneratePdfFromHtml(pdfDocument);

 pdfDocument.Close();

 }

 private static void GeneratePdfFromHtml(PdfDocument pdfDocument) {

 var fontProvider = new BasicFontProvider(false, false, false);

 var baseDirectorySite = Path.Combine(Directory.GetCurrentDirectory(), ResourceDirectory, "kb.itextpdf.com",

 "itext");

 Directory.GetFiles(Path.Combine(ResourceDirectory, "font"), "*.ttf")

 .ToList().ForEach(file => fontProvider.AddFont(file));

 var outlineHandler = OutlineHandler.CreateStandardHandler();

 var converterProperties = new ConverterProperties()

 .SetBaseUri(baseDirectorySite)

 .SetImmediateFlush(false)

 .SetOutlineHandler(outlineHandler)

 .SetTagWorkerFactory(new CustomTagWorkerFactory())

 .SetFontProvider(fontProvider);

 var html = File.ReadAllText(Path.Combine(baseDirectorySite, PageToConvert));

 var font = PdfFontFactory.CreateFont(Path.Combine(Directory.GetCurrentDirectory(), ResourceDirectory,

 "font", "NotoSans-Regular.ttf"));

 var pagNumberHandler = new AddPdfACompliantPageNumbers(font);

 pdfDocument.AddEventHandler(PdfDocumentEvent.END_PAGE, pagNumberHandler);

 var htmDocument = new HtmlDocument();

 htmDocument.LoadHtml(html);

 var htmlProcessor = new HtmlProcessor(htmDocument);

 htmlProcessor.PreCustomContentProcess();

 var customContentInjector = new CustomContentInjector(htmDocument, ResourceDirectory);

 customContentInjector.Inject("customhtml/custom_style.html", "//head", 0);

 customContentInjector.Inject("customhtml/footer.html", "//body", 0);

 customContentInjector.Inject("customhtml/logo.html", "//body", 1);

 customContentInjector.Inject("customhtml/custom_content_after_logo.html", "//body", 2);

 customContentInjector.Inject("customhtml/custom_content_at_end.html", "//body");

 // We need full html before post processing

 new TocAndBookMarkGenerator(htmDocument, pdfDocument).AddTocAndBookMark();

 htmlProcessor.PostCustomContentProcess();

 var document =

 HtmlConverter.ConvertToDocument(htmDocument.DocumentNode.OuterHtml, pdfDocument, converterProperties);

 document.Flush();

 var lcg = new LayeredCodeSamplesGenerator(pdfDocument, fontProvider, ResourceDirectory);

 lcg.AddCodeSample("sample1", "Signature validation example");

 pagNumberHandler.SetPages(pdfDocument.GetNumberOfPages());

 document.Close();

 pdfDocument.Close();

 }

 }

}

ReleaseNotesGenerator/ReleaseNotesGenerator.csproj

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>

 <OutputType>Exe</OutputType>

 <LangVersion>8</LangVersion>

 <Nullable>enable</Nullable>

 <PublishAot>true</PublishAot>

 <InvariantGlobalization>false</InvariantGlobalization>

 <TargetFramework>net8.0</TargetFramework>

 </PropertyGroup>

 <ItemGroup>

 <PackageReference Include="itext.bouncy-castle-adapter" Version="9.5.0-SNAPSHOT" />

 <PackageReference Include="itext.commons" Version="9.5.0-SNAPSHOT" />

 <PackageReference Include="itext" Version="9.5.0-SNAPSHOT" />

 <PackageReference Include="itext.pdftest" Version="9.5.0-SNAPSHOT" />

 <PackageReference Include="itext.pdfhtml" Version="6.3.1-SNAPSHOT" />

 <PackageReference Include="itext.pdfcalligraph" Version="5.0.4-SNAPSHOT" />

 <PackageReference Include="itext.licensing.base" Version="4.2.5-SNAPSHOT" />

 <PackageReference Include="HtmlAgilityPack" Version="1.11.70" />

 <PackageReference Include="Pkcs11Interop" Version="5.1.1" />

 <!-- Required for CustomVeraPdfValidator and pdfTest -->

 <PackageReference Include="NUnit" Version="3.7.1" />

 </ItemGroup>

 <ItemGroup>

 <Content Include="resources***.*">

 <CopyToOutputDirectory>Always</CopyToOutputDirectory>

 </Content>

 </ItemGroup>

 <ItemGroup>

 <Folder Include="resources\kb.itextpdf.com__assets-c2adfbc7-08e1-45d7-9879-4f5707dce348\css\" />

 <Folder Include="resources\kb.itextpdf.com__assets-c8b5fc36-7492-425a-8d1f-0ecc2748ed70\css\" />

 <Folder Include="resources\kb.itextpdf.com__theme\css\" />

 </ItemGroup>

 <ItemGroup>

 <None Remove="source-code.zip" />

 <None Remove="test.html" />

 </ItemGroup>

</Project>

ReleaseNotesGenerator/Utils/AddPdfACompliantPageNumbers.cs

using System;

using iText.Kernel.Font;

using iText.Kernel.Pdf;

using iText.Kernel.Pdf.Canvas;

using iText.Kernel.Pdf.Event;

using iText.Pdfa;

namespace ReleaseNotesGenerator.Utils {

 /// <summary>

 /// This is an example of an event handler that adds a header and a footer to a PDF/A document.

 /// We need to tag the number as an artifact instead of real content as The PDF/A standard says that footer contents are artifacts.

 /// </summary>

 public class AddPdfACompliantPageNumbers : AbstractPdfDocumentEventHandler {

 private readonly PdfFont font;

 private int pages = 0;

 public AddPdfACompliantPageNumbers(PdfFont font) {

 this.font = font;

 }

 protected override void OnAcceptedEvent(AbstractPdfDocumentEvent @event) {

 var docEvent = (PdfDocumentEvent)@event;

 var page = docEvent.GetPage();

 var pageNum = docEvent.GetDocument().GetPageNumber(page);

 var canvas = new PdfCanvas(page);

 canvas.SetDrawingOnPage(true);

 canvas.BeginText();

 canvas.SetFontAndSize(font, 10);

 canvas.BeginMarkedContent(PdfName.Artifact);

 canvas.MoveText(550, 90);

 canvas.ShowText($"{pageNum}");

 canvas.EndText();

 canvas.Stroke();

 canvas.EndMarkedContent();

 canvas.Release();

 }

 public void SetPages(int numberOfPages) {

 pages = numberOfPages;

 }

 }

}

ReleaseNotesGenerator/Utils/CountrySigning.cs

public enum CountrySigning {PORTUGAL, BELGIUM}

ReleaseNotesGenerator/Utils/CustomContentInjector.cs

using System.IO;

using HtmlAgilityPack;

namespace ReleaseNotesGenerator.Utils {

 /// <summary>

 /// Inject custom html temmplates into the html document

 /// </summary>

 public class CustomContentInjector {

 private readonly HtmlDocument htmlDocument;

 private readonly string resourceDirectory;

 public CustomContentInjector(HtmlDocument htmlDocument, string resourceDirectory) {

 this.htmlDocument = htmlDocument;

 this.resourceDirectory = resourceDirectory;

 }

 public void Inject(string fileName, string xpathDestination, int indexInXpath) {

 var path = Path.Combine(Directory.GetCurrentDirectory(), resourceDirectory, fileName);

 var node = HtmlNode.CreateNode(File.ReadAllText(path));

 htmlDocument.DocumentNode.SelectSingleNode(xpathDestination)?

 .ChildNodes.Insert(indexInXpath, node);

 }

 public void Inject(string fileName, string xpathDestination) {

 var path = Path.Combine(Directory.GetCurrentDirectory(), resourceDirectory, fileName);

 var node = HtmlNode.CreateNode(File.ReadAllText(path));

 htmlDocument.DocumentNode.SelectSingleNode(xpathDestination)?

 .ChildNodes.Append(node);

 }

 }

}

ReleaseNotesGenerator/Utils/CustomSignatureTagWorker.cs

using System;

using System.IO;

using iText.Forms.Form.Element;

using iText.Html2pdf.Attach;

using iText.Kernel.Font;

using iText.Layout;

using iText.Layout.Borders;

using iText.StyledXmlParser.Node;

namespace ReleaseNotesGenerator.Utils

{

 public class CustomSignatureTagWorker : ITagWorker

 {

 private SignatureFieldAppearance signatureFieldAppearance;

 public CustomSignatureTagWorker(IElementNode tag) {

 String signatureFieldId = tag.GetAttribute("id");

 signatureFieldAppearance = new SignatureFieldAppearance(signatureFieldId);

 var font = PdfFontFactory.CreateFont(Path.Combine(Directory.GetCurrentDirectory(), "resources",

 "font", "NotoSans-Regular.ttf"), PdfFontFactory.EmbeddingStrategy.FORCE_EMBEDDED);

 signatureFieldAppearance.SetFont(font);

 signatureFieldAppearance.SetFontSize(12);

 signatureFieldAppearance.SetContent("Signature field");

 signatureFieldAppearance.SetBorder(new SolidBorder(1));

 String width = tag.GetAttribute("width");

 signatureFieldAppearance.SetWidth(float.Parse(width));

 signatureFieldAppearance.GetAccessibilityProperties().SetAlternateDescription("Signature field");

 String height = tag.GetAttribute("height");

 signatureFieldAppearance.SetHeight(float.Parse(height));

 signatureFieldAppearance.SetInteractive(true);

 }

 public void ProcessEnd(IElementNode element, ProcessorContext context)

 {

 }

 public bool ProcessContent(string content, ProcessorContext context)

 {

 return false;

 }

 public bool ProcessTagChild(ITagWorker childTagWorker, ProcessorContext context)

 {

 return false;

 }

 public IPropertyContainer GetElementResult()

 {

 return signatureFieldAppearance;

 }

 }

}

ReleaseNotesGenerator/Utils/CustomTagWorkerFactory.cs

using System.Collections.Generic;

using iText.Html2pdf.Attach;

using iText.Html2pdf.Attach.Impl;

using iText.StyledXmlParser.Node;

namespace ReleaseNotesGenerator.Utils {

 /// <summary>

 /// We need to override the default tag worker factory to provide custom tag workers for svg and h tags

 /// This is mainly related to PDF/UA support not 100% there for html2pdf

 /// </summary>

 public class CustomTagWorkerFactory : DefaultTagWorkerFactory {

 public override ITagWorker GetCustomTagWorker(IElementNode tag, ProcessorContext context) {

 if (tag.Name().Equals("signature-field"))

 {

 return new CustomSignatureTagWorker(tag);

 }

 return base.GetCustomTagWorker(tag, context);

 }

 }

}

ReleaseNotesGenerator/Utils/EIdSigner.cs

using System;

using System.Collections.Generic;

using System.IO;

using System.Linq;

using iText.Bouncycastle;

using iText.Bouncycastle.X509;

using iText.Bouncycastleconnector;

using iText.Commons.Bouncycastle;

using iText.Commons.Bouncycastle.Cert;

using iText.Forms.Fields.Properties;

using iText.Forms.Form.Element;

using iText.IO.Image;

using iText.Kernel.Crypto;

using iText.Kernel.Font;

using iText.Kernel.Geom;

using iText.Kernel.Pdf;

using iText.Kernel.Validation;

using iText.Signatures;

using iText.Signatures.Cms;

using Path = System.IO.Path;

namespace ReleaseNotesGenerator.Utils {

 /// <summary>

 /// Example implementation of signing a pdf with an eID card

 /// Currently only supports Belgium and Portugal

 /// Should be tweakable to support other countries take a look where the EIDRelatedConfigs are used

 /// And adapt it to your country specific settings

 /// </summary>

 public class EIdSigner {

 private static readonly Dictionary<CountrySigning, Tuple<string, string, string, int>> EidRelatedConfigs =

 new Dictionary<CountrySigning, Tuple<string, string, string, int>> {

 {

 CountrySigning.PORTUGAL, new Tuple<string, string, string, int>(@"C:\Windows\System32\pteidpkcs11.dll",

 "CITIZEN SIGNATURE CERTIFICATE", "Portuguese eID N", 2048 * 10)

 }, {

 CountrySigning.BELGIUM, new Tuple<string, string, string, int>(

 @"C:\Program Files (x86)\Belgium Identity Card\FireFox Plugin Manifests\beid_ff_pkcs11_64.dll",

 "Signature", "Belgium eID", 1024 * 10)

 }

 };

 private readonly string resourceDirectory;

 private readonly string fileName;

 private readonly string fileToSign;

 private readonly CountrySigning countryToUseForSigning;

 private readonly IBouncyCastleFactory FACTORY = BouncyCastleFactoryCreator.GetFactory();

 public EIdSigner(string resourceDirectory, string fileName, string fileToSign, CountrySigning countryToUseForSigning) {

 this.resourceDirectory = resourceDirectory;

 this.fileName = fileName;

 this.fileToSign = fileToSign;

 this.countryToUseForSigning = countryToUseForSigning;

 }

 public void Sign(string fieldName, string reason, string location) {

 using var signature = new Pkcs11Signature(EidRelatedConfigs[countryToUseForSigning].Item1);

 using var pdfReader = new PdfReader(fileName);

 using var result = File.Create(fileToSign);

 // list available slots

 var slots = signature.GetAvailbaleSlots();

 // select the slot containing a Belgian eId card

 var slot = slots.FirstOrDefault(s =>

 EidRelatedConfigs[countryToUseForSigning].Item3.Equals(s.TokenModel));

 if (slot == null) {

 throw new Exception("No eId card available.");

 }

 // setting the pin here is not needed, and it will be asked interactievely anyhow for signing

 //list available keys

 var keys = signature.GetCertificatesWithPrivateKeys(slot);

 // On a Belgian eId card there are two keys available

 // which both can produce a valid digital signature.

 // But one is designated for authentication purposes and the other for digital signatures.

 // The keys and their certificate are labelled as such

 //

 // here we search for the key to sign with

 var key = keys.FindLast(k =>

 k.CertificateLabel.Equals(EidRelatedConfigs[countryToUseForSigning].Item2));

 if (key == null) {

 throw new Exception("No valid key found.");

 }

 // Select the key and certificate to be used

 signature.SelectSigningKeyAndCertificate(key);

 var pdfSigner = new PdfSigner(pdfReader, result, new StampingProperties().UseAppendMode());

 pdfSigner.GetDocument().GetDiContainer().Register(typeof(ValidationContainer), new ValidationContainer());

 IX509Certificate[] certificateWrappers =

 signature.GetChain().Select(e => new X509CertificateBC(e)).ToArray();

 signature.SetDigestAlgorithmName(DigestAlgorithms.SHA256);

 var signerProperties = new SignerProperties();

 signerProperties.SetFieldName(fieldName);

 pdfSigner.SetSignerProperties(signerProperties);

 var imageData = ImageDataFactory.Create(Path.Combine(Directory.GetCurrentDirectory(),

 resourceDirectory, "images", "signature.png"));

 signerProperties.SetLocation(location)

 .SetReason(reason);

 var appearanceText = new SignedAppearanceText();

 var signatureAppearance =

 new SignatureFieldAppearance(SignerProperties.IGNORED_ID)

 .SetContent(appearanceText, imageData);

 signatureAppearance.GetAccessibilityProperties().SetAlternateDescription("Signature block");

 var font = PdfFontFactory.CreateFont(Path.Combine(Directory.GetCurrentDirectory(), resourceDirectory,

 "font", "NotoSans-Regular.ttf"));

 signatureAppearance.SetFont(font);

 signerProperties.SetSignatureAppearance(signatureAppearance);

 // create a temp cms container to calculate the size of the signature

 CMSContainer cmsContainer = new CMSContainer();

 cmsContainer.AddCertificates(certificateWrappers);

 cmsContainer.GetSignerInfo().SetSigningCertificateAndAddToSignedAttributes(

 FACTORY.CreateX509Certificate(

 key.Certificate.GetEncoded()),

 DigestAlgorithms.GetAllowedDigest(signature.GetDigestAlgorithmName()));

 cmsContainer.GetSignerInfo().SetDigestAlgorithm(

 new AlgorithmIdentifier(DigestAlgorithms.GetAllowedDigest(signature.GetDigestAlgorithmName())));

 pdfSigner.SignDetached(signature, certificateWrappers, null, null, null,

 (int)cmsContainer.GetSizeEstimation(), PdfSigner.CryptoStandard.CMS);

 }

 }

}

ReleaseNotesGenerator/Utils/HtmlProcessor.cs

using System.Linq;

using HtmlAgilityPack;

namespace ReleaseNotesGenerator.Utils {

 /// <summary>

 /// Process the html document to remove unwanted nodes and add custom attributes

 /// And also resolve relative links and add alt attribute to images which don't have it

 /// </summary>

 public class HtmlProcessor {

 private readonly HtmlDocument htmlDocument;

 public HtmlProcessor(HtmlDocument htmlDocument) {

 this.htmlDocument = htmlDocument;

 }

 public void PreCustomContentProcess() {

 RemoveUnwantedNodes();

 }

 public void PostCustomContentProcess() {

 //Add alt attribute to images to avoid accessibility issues

 var imgNodes = htmlDocument.DocumentNode.SelectNodes("//img");

 if (imgNodes != null) {

 foreach (var selectNode in imgNodes) {

 if (selectNode.GetAttributeValue("alt", "") == "") {

 selectNode.SetAttributeValue("alt", "Image");

 }

 }

 }

 //Add alt attribute to images to avoid accessibility issues

 var svgNodes = htmlDocument.DocumentNode.SelectNodes("//svg");

 if (svgNodes != null) {

 foreach (var selectNode in htmlDocument.DocumentNode.SelectNodes("//svg")) {

 if (selectNode.GetAttributeValue("alt", "") == "") {

 selectNode.SetAttributeValue("alt", "Image");

 }

 }

 }

 //Resolve relative links

 var aNodes = htmlDocument.DocumentNode.SelectNodes("//a");

 if (aNodes != null) {

 foreach (var selectNode in htmlDocument.DocumentNode.SelectNodes("//a")) {

 var href = selectNode.GetAttributeValue("href", "");

 if (!href.StartsWith("http") && !href.StartsWith("#")) {

 selectNode.SetAttributeValue("href",

 "https://kb.itextpdf.com/itext/" + href.Replace(".html", ""));

 }

 }

 }

 }

 private void RemoveUnwantedNodes() {

 htmlDocument.DocumentNode

 .Descendants()

 .ToList() //avoiding InvalidOperationException

 .Where(IsUnWantedNode)

 .Select(p => p.XPath)

 .ToList()

 .ForEach(p => htmlDocument.DocumentNode.SelectSingleNode(p)?.Remove());

 }

 private bool IsUnWantedNode(HtmlNode node) {

 if (node.Name == "header" && node.GetAttributeValue("class", "") != "article-header") {

 return true;

 }

 switch (node.Name) {

 case "footer":

 case "script":

 case "nav":

 case "link" when node.GetAttributeValue("rel", "") == "stylesheet":

 return true;

 }

 if (node.Name == "button" && node.GetAttributeValue("class", "") ==

 "vp-a11y-skip-trigger vp-js-a11y-navigation-toggle") {

 return true;

 }

 if (node.Name == "div" && node.GetAttributeValue("class", "") == "vp-error-log") {

 return true;

 }

 if (node.Name == "div" && node.GetAttributeValue("class", "").Contains("table-overlay")) {

 return true;

 }

 if (node.Name == "vp-a11y-skip-controller") {

 return true;

 }

 return false;

 }

 }

}

ReleaseNotesGenerator/Utils/LayeredCodeSamplesGenerator.cs

using System.Drawing;

using System.IO;

using iText.Html2pdf;

using iText.Kernel.Pdf;

using iText.Kernel.Pdf.Layer;

using iText.Layout;

using iText.Layout.Element;

using iText.Layout.Font;

using Rectangle = iText.Kernel.Geom.Rectangle;

namespace ReleaseNotesGenerator.Utils {

 /// <summary>

 /// Generates a layer from code samples which are toggled on and off

 /// By default we will show java code samples.

 /// </summary>

 public class LayeredCodeSamplesGenerator {

 private readonly PdfDocument pdfDocument;

 private readonly FontProvider fontProvider;

 private readonly string ResourceDirectory;

 public LayeredCodeSamplesGenerator(PdfDocument document, FontProvider fontProvider, string resourceDirectory) {

 this.pdfDocument = document;

 this.fontProvider = fontProvider;

 ResourceDirectory = resourceDirectory;

 }

 public void AddCodeSample(string name, string title) {

 var page = pdfDocument.AddNewPage();

 var pageRectangle = page.GetPageSize();

 //Apply a4 page margins

 pageRectangle.ApplyMargins(36, 36, 36, 36, false);

 AddLayer(page, pageRectangle, title, name, true);

 AddLayer(page, pageRectangle, title, name, false);

 }

 private void AddLayer(PdfPage page, Rectangle pageRectangle, string title, string name, bool isJava) {

 var canvas = new Canvas(page, pageRectangle);

 var pdfLayer = new PdfLayer(title + (isJava ? " (java)" : " (C#)"), pdfDocument);

 pdfLayer.SetOn(isJava);

 canvas.GetPdfCanvas().BeginLayer(pdfLayer);

 var sharpCode = File.ReadAllText(Path.Combine(Directory.GetCurrentDirectory(),

 ResourceDirectory,

 "codeSamples", name + "-" + (isJava ? "java" : "sharp") + ".html"));

 var converterProperties = new ConverterProperties().SetFontProvider(fontProvider);

 converterProperties.SetTagWorkerFactory(new CustomTagWorkerFactory());

 var elements = HtmlConverter.ConvertToElements(sharpCode, converterProperties);

 foreach (var element in elements) {

 if (element is IBlockElement blockElement) {

 canvas.Add(blockElement);

 }

 }

 canvas.GetPdfCanvas().EndLayer();

 canvas.Flush();

 canvas.Close();

 }

 }

}

ReleaseNotesGenerator/Utils/PkCs1Signature.cs

using System;

using System.Collections.Generic;

using iText.Kernel.Crypto;

using iText.Signatures;

using Net.Pkcs11Interop.Common;

using Net.Pkcs11Interop.HighLevelAPI;

using Net.Pkcs11Interop.HighLevelAPI.Factories;

using Net.Pkcs11Interop.HighLevelAPI.MechanismParams;

using Org.BouncyCastle.Asn1.X509;

using Org.BouncyCastle.X509;

namespace ReleaseNotesGenerator.Utils {

 public class Pkcs11Signature : IExternalSignature, IDisposable

 {

 private IPkcs11Library pkcs11Library;

 private IObjectHandle privateKeyHandle;

 private X509Certificate[] chain;

 private string signatureAlgorithmName;

 private string digestAlgorithmName;

 private byte[] pin;

 private List<CKA> pkAttributeKeys;

 private List<CKA> certAttributeKeys;

 private ObjectAttributeFactory objectAttributeFactory;

 private SlotInfo selectedSlot;

 private ISession chachedSession;

 private bool loggedIn = false;

 public Pkcs11Signature(string libraryPath)

 {

 pkAttributeKeys = new List<CKA>();

 pkAttributeKeys.Add(CKA.CKA_KEY_TYPE);

 pkAttributeKeys.Add(CKA.CKA_LABEL);

 pkAttributeKeys.Add(CKA.CKA_ID);

 certAttributeKeys = new List<CKA>();

 certAttributeKeys.Add(CKA.CKA_VALUE);

 certAttributeKeys.Add(CKA.CKA_LABEL);

 certAttributeKeys.Add(CKA.CKA_ID);

 certAttributeKeys.Add(CKA.CKA_CERTIFICATE_CATEGORY);

 objectAttributeFactory = new ObjectAttributeFactory();

 var factories = new Pkcs11InteropFactories();

 pkcs11Library = factories.Pkcs11LibraryFactory.LoadPkcs11Library(factories, libraryPath, AppType.MultiThreaded);

 }

 /// <summary>

 /// List the available slots and their token.

 /// </summary>

 /// <returns>the available slots and their token</returns>

 public List<Pkcs11Signature.SlotInfo> GetAvailbaleSlots()

 {

 var result = new List<Pkcs11Signature.SlotInfo>();

 foreach (var slot in pkcs11Library.GetSlotList(SlotsType.WithOrWithoutTokenPresent))

 {

 result.Add(new Pkcs11Signature.SlotInfo(slot));

 }

 return result;

 }

 /// <summary>

 /// List the key info of keys and linked certificates available trough the selected Pkcs11 library.

 ///

 /// A key can be used by multiple certificates.

 /// </summary>

 /// <param name="slotId">The numerical slot id</param>

 /// <returns>a list of key info of keys and linked certificates available trough the selected Pkcs11 library</returns>

 public List<Pkcs11KeyInfo> GetCertificatesWithPrivateKeys(ulong slotId) {

 var slot = pkcs11Library.GetSlotList(SlotsType.WithOrWithoutTokenPresent).FindLast(s => s.SlotId == slotId);

 if (slot == null)

 {

 throw new Exception("slot with slot id " + slotId + " was not found.");

 }

 return GetCertificatesWithPrivateKeys(new Pkcs11Signature.SlotInfo(slot));

 }

 /// <summary>

 /// List the key info of keys and linked certificates available trough the selected Pkcs11 library.

 ///

 /// A key can be used by multiple certificates.

 /// </summary>

 /// <param name="slotInfo">The slotinfo to retrieve the keys and certificates from</param>

 /// <returns>a list of key info of keys and linked certificates available trough the selected Pkcs11 library</returns>

 public List<Pkcs11KeyInfo> GetCertificatesWithPrivateKeys(SlotInfo slotInfo)

 {

 var result = new List<Pkcs11KeyInfo>();

 if (slotInfo.TokenPresent)

 {

 var session = GetSession(slotInfo);

 {

 List<IObjectAttribute> attributes = new List<IObjectAttribute>();

 attributes.Add(objectAttributeFactory.Create(CKA.CKA_CLASS, CKO.CKO_PRIVATE_KEY));

 List<IObjectHandle> keys = session.FindAllObjects(attributes);

 foreach (var key in keys)

 {

 List<IObjectAttribute> keyAttributes = session.GetAttributeValue(key, pkAttributeKeys);

 attributes.Clear();

 attributes.Add(objectAttributeFactory.Create(CKA.CKA_CLASS, CKO.CKO_CERTIFICATE));

 attributes.Add(objectAttributeFactory.Create(CKA.CKA_CERTIFICATE_TYPE, CKC.CKC_X_509));

 attributes.Add(objectAttributeFactory.Create(CKA.CKA_ID, keyAttributes[2].GetValueAsByteArray()));

 List<IObjectHandle> certificates = session.FindAllObjects(attributes);

 foreach (var linkedCertificate in certificates)

 {

 List<IObjectAttribute> certificateAttributes = session.GetAttributeValue(linkedCertificate, certAttributeKeys);

 result.Add(new Pkcs11KeyInfo(slotInfo, keyAttributes[2].GetValueAsByteArray(), keyAttributes[1]?.GetValueAsString(), certificateAttributes[0].GetValueAsByteArray(), certificateAttributes[1]?.GetValueAsString()));

 }

 }

 }

 }

 return result;

 }

 /// <summary>

 /// Selects the key and certificate that will be used for signing.

 /// </summary>

 /// <param name="key"> The key and certificate to be used.</param>

 /// <param name="keyId"></param>

 /// <returns></returns>

 /// <exception cref="Exception"></exception>

 public Pkcs11Signature SelectSigningKeyAndCertificate(Pkcs11KeyInfo key)

 {

 var session = GetSession(key.SlotInfo);

 var objectAttributeFactory = new ObjectAttributeFactory();

 List<IObjectAttribute> attributes = new List<IObjectAttribute>();

 attributes.Add(objectAttributeFactory.Create(CKA.CKA_CLASS, CKO.CKO_PRIVATE_KEY));

 attributes.Add(objectAttributeFactory.Create(CKA.CKA_ID, key.KeyId));

 List<IObjectHandle> keys = session.FindAllObjects(attributes);

 if (keys.Count != 1)

 {

 throw new Exception("Key " + System.Convert.ToBase64String(key.KeyId) + " not found in token " + key.SlotInfo.TokenModel + " " + key.SlotInfo.TokenLabel);

 }

 privateKeyHandle = keys[0];

 List<IObjectAttribute> keyAttributes = session.GetAttributeValue(privateKeyHandle, pkAttributeKeys);

 var type = keyAttributes[0].GetValueAsUlong();

 switch (type)

 {

 case (ulong)CKK.CKK_RSA:

 signatureAlgorithmName = "RSA";

 break;

 case (ulong)CKK.CKK_DSA:

 signatureAlgorithmName = "DSA";

 break;

 case (ulong)CKK.CKK_ECDSA:

 signatureAlgorithmName = "ECDSA";

 break;

 }

 attributes.Clear();

 attributes.Add(objectAttributeFactory.Create(CKA.CKA_CLASS, CKO.CKO_CERTIFICATE));

 attributes.Add(objectAttributeFactory.Create(CKA.CKA_CERTIFICATE_TYPE, CKC.CKC_X_509));

 attributes.Add(objectAttributeFactory.Create(CKA.CKA_VALUE, key.CertificateBytes));

 List<IObjectHandle> certificates = session.FindAllObjects(attributes);

 if (certificates.Count != 1)

 {

 ;

 throw new Exception("Certificate " + key.Certificate + "not found in token " + key.SlotInfo.TokenModel + " " + key.SlotInfo.TokenLabel);

 }

 var certificate = certificates[0];

 List<IObjectAttribute> certificateAttributes = session.GetAttributeValue(certificate, certAttributeKeys);

 var x509Certificate = new X509Certificate(X509CertificateStructure.GetInstance(certificateAttributes[0].GetValueAsByteArray()));

 List<X509Certificate> x509Certificates = new List<X509Certificate>();

 x509Certificates.Add(x509Certificate);

 attributes.Clear();

 attributes.Add(objectAttributeFactory.Create(CKA.CKA_CLASS, CKO.CKO_CERTIFICATE));

 attributes.Add(objectAttributeFactory.Create(CKA.CKA_CERTIFICATE_TYPE, CKC.CKC_X_509));

 List<IObjectHandle> otherCertificates = session.FindAllObjects(attributes);

 foreach (var otherCertificate in otherCertificates)

 {

 if (!certificate.ObjectId.Equals(otherCertificate.ObjectId))

 {

 certificateAttributes = session.GetAttributeValue(otherCertificate, certAttributeKeys);

 var otherX509Certificate = new X509Certificate(X509CertificateStructure.GetInstance(certificateAttributes[0].GetValueAsByteArray()));

 x509Certificates.Add(otherX509Certificate);

 }

 }

 this.chain = x509Certificates.ToArray();

 return this;

 }

 public void Dispose()

 {

 if (pin != null)

 {

 Array.Clear(pin, 0, pin.Length);

 }

 selectedSlot?.Slot.CloseAllSessions();

 pkcs11Library?.Dispose();

 }

 public X509Certificate[] GetChain()

 {

 CheckKeySelected();

 return chain;

 }

 public bool UsePssForRsaSsa { get; set; }

 /// <summary>

 /// Set the pin when needed

 /// Remark, a copy of this value will be stored. You have to clean out the original value for security as soon as possible.

 ///

 /// Sometimes the pin is only needed to perform the actual signing, sometimes it is needed for quering the keys.

 ///

 /// On failure the pin will be reset to avoid locking tokens after too many failed login attempts

 /// </summary>

 public byte[] Pin

 {

 get => pin;

 set

 {

 if (pin != null)

 {

 Array.Clear(pin, 0, pin.Length);

 }

 if (value != null)

 {

 pin = new byte[value.Length];

 Array.Copy(value, pin, pin.Length);

 }

 else

 {

 pin = null;

 }

 }

 }

 public string GetSignatureAlgorithmName()

 {

 CheckKeySelected();

 return UsePssForRsaSsa && "RSA".Equals(signatureAlgorithmName) ? "RSASSA-PSS" : signatureAlgorithmName;

 }

 public ISignatureMechanismParams GetSignatureMechanismParameters()

 {

 CheckKeySelected();

 return UsePssForRsaSsa && "RSA".Equals(signatureAlgorithmName) ? RSASSAPSSMechanismParams.CreateForDigestAlgorithm(digestAlgorithmName) : null;

 }

 public string GetDigestAlgorithmName()

 {

 return digestAlgorithmName;

 }

 public Pkcs11Signature SetDigestAlgorithmName(String digestAlgorithmName)

 {

 this.digestAlgorithmName = DigestAlgorithms.GetDigest(DigestAlgorithms.GetAllowedDigest(digestAlgorithmName));

 return this;

 }

 public byte[] Sign(byte[] message)

 {

 CheckKeySelected();

 var mechanismFactory = new MechanismFactory();

 IMechanism mechanism;

 switch (signatureAlgorithmName)

 {

 case "DSA":

 switch (digestAlgorithmName)

 {

 case "SHA1":

 mechanism = mechanismFactory.Create(CKM.CKM_DSA_SHA1);

 break;

 case "SHA224":

 mechanism = mechanismFactory.Create(CKM.CKM_DSA_SHA224);

 break;

 case "SHA256":

 mechanism = mechanismFactory.Create(CKM.CKM_DSA_SHA256);

 break;

 case "SHA384":

 mechanism = mechanismFactory.Create(CKM.CKM_DSA_SHA384);

 break;

 case "SHA512":

 mechanism = mechanismFactory.Create(CKM.CKM_DSA_SHA512);

 break;

 default:

 throw new ArgumentException("Not supported: " + digestAlgorithmName + "with" + signatureAlgorithmName);

 }

 break;

 case "ECDSA":

 switch (digestAlgorithmName)

 {

 case "SHA1":

 mechanism = mechanismFactory.Create(CKM.CKM_ECDSA_SHA1);

 break;

 case "SHA224":

 mechanism = mechanismFactory.Create(CKM.CKM_ECDSA_SHA224);

 break;

 case "SHA256":

 mechanism = mechanismFactory.Create(CKM.CKM_ECDSA_SHA256);

 break;

 case "SHA384":

 mechanism = mechanismFactory.Create(CKM.CKM_ECDSA_SHA384);

 break;

 case "SHA512":

 mechanism = mechanismFactory.Create(CKM.CKM_ECDSA_SHA512);

 break;

 default:

 throw new ArgumentException("Not supported: " + digestAlgorithmName + "with" + signatureAlgorithmName);

 }

 break;

 case "RSA":

 if (UsePssForRsaSsa)

 {

 var mechanismParamsFactory = new MechanismParamsFactory();

 IMechanismParams pssParams = null;

 switch (digestAlgorithmName)

 {

 case "SHA1":

 pssParams = mechanismParamsFactory.CreateCkRsaPkcsPssParams((ulong)CKM.CKM_SHA_1, (ulong)CKG.CKG_MGF1_SHA1, (ulong)(DigestAlgorithms.GetOutputBitLength(digestAlgorithmName) / 8));

 mechanism = mechanismFactory.Create(CKM.CKM_SHA1_RSA_PKCS_PSS, pssParams);

 break;

 case "SHA224":

 pssParams = mechanismParamsFactory.CreateCkRsaPkcsPssParams((ulong)CKM.CKM_SHA224, (ulong)CKG.CKG_MGF1_SHA224, (ulong)(DigestAlgorithms.GetOutputBitLength(digestAlgorithmName) / 8));

 mechanism = mechanismFactory.Create(CKM.CKM_SHA224_RSA_PKCS_PSS, pssParams);

 break;

 case "SHA256":

 pssParams = mechanismParamsFactory.CreateCkRsaPkcsPssParams((ulong)CKM.CKM_SHA256, (ulong)CKG.CKG_MGF1_SHA256, (ulong)(DigestAlgorithms.GetOutputBitLength(digestAlgorithmName) / 8));

 mechanism = mechanismFactory.Create(CKM.CKM_SHA256_RSA_PKCS_PSS, pssParams);

 break;

 case "SHA384":

 pssParams = mechanismParamsFactory.CreateCkRsaPkcsPssParams((ulong)CKM.CKM_SHA384, (ulong)CKG.CKG_MGF1_SHA384, (ulong)(DigestAlgorithms.GetOutputBitLength(digestAlgorithmName) / 8));

 mechanism = mechanismFactory.Create(CKM.CKM_SHA384_RSA_PKCS_PSS, pssParams);

 break;

 case "SHA512":

 pssParams = mechanismParamsFactory.CreateCkRsaPkcsPssParams((ulong)CKM.CKM_SHA224, (ulong)CKG.CKG_MGF1_SHA224, (ulong)(DigestAlgorithms.GetOutputBitLength(digestAlgorithmName) / 8));

 mechanism = mechanismFactory.Create(CKM.CKM_SHA512_RSA_PKCS_PSS, pssParams);

 break;

 default:

 throw new ArgumentException("Not supported: " + digestAlgorithmName + "with" + signatureAlgorithmName);

 }

 }

 else

 {

 switch (digestAlgorithmName)

 {

 case "SHA1":

 mechanism = mechanismFactory.Create(CKM.CKM_SHA1_RSA_PKCS);

 break;

 case "SHA224":

 mechanism = mechanismFactory.Create(CKM.CKM_SHA224_RSA_PKCS);

 break;

 case "SHA256":

 mechanism = mechanismFactory.Create(CKM.CKM_SHA256_RSA_PKCS);

 break;

 case "SHA384":

 mechanism = mechanismFactory.Create(CKM.CKM_SHA384_RSA_PKCS);

 break;

 case "SHA512":

 mechanism = mechanismFactory.Create(CKM.CKM_SHA512_RSA_PKCS);

 break;

 default:

 throw new ArgumentException("Not supported: " + digestAlgorithmName + "with" + signatureAlgorithmName);

 }

 }

 break;

 default:

 throw new ArgumentException("Not supported: " + digestAlgorithmName + "with" + signatureAlgorithmName);

 }

 var session = GetSession(selectedSlot);

 try

 {

 return session.Sign(mechanism, privateKeyHandle, message);

 }

 catch (Exception e)

 {

 if (pin != null)

 {

 Array.Clear(pin, 0, pin.Length);

 pin = null;

 }

 selectedSlot?.Slot.CloseAllSessions();

 throw;

 }

 }

 private ISession GetSession(SlotInfo slotInfo)

 {

 if (slotInfo == selectedSlot && chachedSession != null)

 {

 LogIn();

 return chachedSession;

 }

 if (chachedSession != null)

 {

 chachedSession.CloseSession();

 slotInfo.Slot.CloseAllSessions();

 }

 chachedSession = slotInfo.GetSession();

 selectedSlot = slotInfo;

 LogIn();

 return chachedSession;

 }

 private void LogIn()

 {

 if (pin != null && !loggedIn)

 {

 try

 {

 chachedSession.Login(CKU.CKU_USER, pin);

 }

 catch (Exception e)

 {

 Array.Clear(pin, 0, pin.Length);

 pin = null;

 throw;

 }

 loggedIn = true;

 }

 }

 private void CheckKeySelected()

 {

 if (privateKeyHandle == null)

 throw new Exception("Invalid state, no key selected yet.");

 }

 public class SlotInfo

 {

 private ISlotInfo slotInfo;

 private ISlot slot;

 private ITokenInfo tokenInfo;

 internal SlotInfo(ISlot slot)

 {

 this.slot = slot;

 this.slotInfo = slot.GetSlotInfo();

 if (slotInfo.SlotFlags.TokenPresent)

 {

 this.tokenInfo = slot.GetTokenInfo();

 }

 }

 public ulong SlotId { get => slotInfo.SlotId; }

 public string SlotDescription { get => slotInfo.SlotDescription; }

 public bool HardwareSlot { get => slotInfo.SlotFlags.HardwareSlot; }

 public bool RemovableDevice { get => slotInfo.SlotFlags.RemovableDevice; }

 public bool TokenPresent { get => slotInfo.SlotFlags.TokenPresent; }

 public string TokenModel { get => tokenInfo?.Model; }

 public string TokenLabel { get => tokenInfo?.Label; }

 public bool LoginRequired { get => tokenInfo?.TokenFlags.LoginRequired ?? false; }

 internal ISlot Slot { get => slot; }

 internal ISlotInfo GetSlotInfo() { return slotInfo; }

 internal ITokenInfo GetTokenInfo() { return tokenInfo; }

 internal ISession GetSession()

 {

 return slot.OpenSession(SessionType.ReadOnly);

 }

 }

 /// <summary>

 /// Contains info about keys available trough pkcs 11 container

 /// </summary>

 public class Pkcs11KeyInfo

 {

 /// <summary>

 /// The key id

 /// </summary>

 public byte[] KeyId { get; }

 /// <summary>

 /// The label of the key

 /// </summary>

 public string KeyLabel { get; }

 /// <summary>

 /// The certificate associated with the key

 /// </summary>

 public X509Certificate Certificate { get; }

 /// <summary>

 /// The label assigned to the certificate

 /// </summary>

 public string CertificateLabel { get; }

 public SlotInfo SlotInfo { get; internal set; }

 internal byte[] CertificateBytes;

 internal Pkcs11KeyInfo(SlotInfo slotInfo, byte[] keyId, string keyLabel, byte[] certificate, string certificateLabel)

 {

 this.SlotInfo = slotInfo;

 this.KeyId = keyId;

 this.KeyLabel = keyLabel;

 this.CertificateBytes = certificate;

 this.Certificate = new X509Certificate(X509CertificateStructure.GetInstance(certificate));

 this.CertificateLabel = certificateLabel;

 }

 }

 }

}

ReleaseNotesGenerator/Utils/StructuredZipFolderBuilder.cs

using System;

using System.Collections.Generic;

using System.IO;

using System.IO.Compression;

namespace ReleaseNotesGenerator.Utils {

 /// <summary>

 /// Build a structured zip file from a directory

 /// While ignoring some directories and files

 /// </summary>

 public static class StructuredZipFolderBuilder {

 public static void StructuredZip(ZipArchive archive, string sourceDirName,

 CompressionLevel compressionLevel = CompressionLevel.Fastest) {

 var folders = new Stack<string>();

 folders.Push(sourceDirName);

 do {

 var currentFolder = folders.Pop();

 foreach (var file in Directory.GetFiles(currentFolder)) {

 if (file.Contains("bin")

 || file.Contains("obj")

 || file.Contains(".git")

 || file.Contains("kb.itextpdf.com")

 || file.Contains(".vs")

 || file.Contains(".pdf")

 || file.Contains(".zip")

 || file.Contains("ValidationExample")

 || file.Contains(".idea")

 || file.Contains(".user")) {

 continue;

 }

 Console.WriteLine("Adding file: " + file);

 archive.CreateEntryFromFile(file, file[(sourceDirName.Length + 1)..], compressionLevel);

 }

 foreach (var item in Directory.GetDirectories(currentFolder)) {

 folders.Push(item);

 }

 } while (folders.Count > 0);

 }

 }

}

ReleaseNotesGenerator/Utils/TocAndBookMarkGenerator.cs

using System;

using System.IO;

using System.Text;

using HtmlAgilityPack;

using iText.Kernel.Pdf;

using iText.Kernel.Pdf.Action;

namespace ReleaseNotesGenerator.Utils {

 /// <summary>

 /// Generate Table of Contents and Bookmarks for the PDF

 /// </summary>

 public class TocAndBookMarkGenerator {

 private readonly HtmlDocument htmDocument;

 private readonly PdfDocument pdfDocument;

 public TocAndBookMarkGenerator(HtmlDocument htmDocument, PdfDocument pdfDocument) {

 this.htmDocument = htmDocument;

 this.pdfDocument = pdfDocument;

 }

 public void AddTocAndBookMark()

 {

 StringBuilder tocStyles = new StringBuilder();

 var tocElements = htmDocument.DocumentNode.SelectNodes("//h2 | //h1 | //h3 | //h4");

 foreach (HtmlNode elem in tocElements)

 {

 string id = elem.GetAttributeValue("id", Guid.NewGuid().ToString());

 elem.SetAttributeValue("id", id);

 tocStyles.Append("*[data-toc-id=\"")

 .Append(id)

 .Append("\"] .toc-page-ref::after {\ncontent: target-counter(\"#")

 .Append(id)

 .Append("\", page) \n }\n");

 }

 var tableOfContentsTitle = "Table of Contents";

 var tocTitleNode =

 new HtmlNode(HtmlNodeType.Element, htmDocument, -1) { Name = "h2", InnerHtml = tableOfContentsTitle };

 htmDocument.DocumentNode.SelectSingleNode("//body")?.ChildNodes.Insert(3, tocTitleNode);

 var tocTableNode = new HtmlNode(HtmlNodeType.Element, htmDocument, -1) { Name = "table" };

 tocTableNode.SetAttributeValue("style", "width: 100%; border: none; border-collapse: collapse; page-break-after: always;");

 var bookMarks = pdfDocument.GetOutlines(false);

 bookMarks.SetTitle("Bookmarks");

 foreach (var h2Node in tocElements)

 {

 if (h2Node.InnerText == tableOfContentsTitle)

 {

 continue;

 }

 if (string.IsNullOrEmpty(h2Node.Id))

 {

 h2Node.Id = Guid.NewGuid().ToString();

 }

 var tocRow = new HtmlNode(HtmlNodeType.Element, htmDocument, -1) { Name = "tr" };

 tocRow.SetAttributeValue("data-toc-id", h2Node.Id);

 tocRow.SetAttributeValue("style", "border: none;");

 var titleCell = new HtmlNode(HtmlNodeType.Element, htmDocument, -1) { Name = "td" };

 titleCell.SetAttributeValue("style", "border: none;");

 var titleLink =

 new HtmlNode(HtmlNodeType.Element, htmDocument, -1) { Name = "a", InnerHtml = h2Node.InnerText };

 titleLink.SetAttributeValue("href", "#" + h2Node.Id);

 if ("h3".Equals(h2Node.Name) || "h4".Equals(h2Node.Name))

 {

 titleLink.SetAttributeValue("style", "padding-left: 30pt;");

 }

 titleCell.AppendChild(titleLink);

 tocRow.AppendChild(titleCell);

 var pageCell = new HtmlNode(HtmlNodeType.Element, htmDocument, -1) { Name = "td" };

 pageCell.SetAttributeValue("style", "border: none; text-align: right;");

 var pageLink = new HtmlNode(HtmlNodeType.Element, htmDocument, -1) { Name = "a" };

 pageLink.SetAttributeValue("href", "#" + h2Node.Id);

 var pageRef = new HtmlNode(HtmlNodeType.Element, htmDocument, -1) { Name = "span" };

 pageRef.SetAttributeValue("class", "toc-page-ref");

 pageLink.AppendChild(pageRef);

 pageCell.AppendChild(pageLink);

 tocRow.AppendChild(pageCell);

 tocTableNode.AppendChild(tocRow);

 }

 htmDocument.DocumentNode.SelectSingleNode("//body")?.ChildNodes.Insert(4, tocTableNode);

 htmDocument.DocumentNode.SelectSingleNode("//head")

 ?.ChildNodes.Insert(0, HtmlNode.CreateNode("<style>\n\n " + tocStyles + "</style>"));

 }

 }

}

ReleaseNotesGenerator/resources/simplePdfUA2.xmp

 2
	 2024

ReleaseNotesGenerator/resources/sRGB Color Space Profile.icm

ReleaseNotesGenerator/resources/wget-download-command.sh

#!/usr/bin/env bash

wget --mirror --convert-links -l 1 --adjust-extension --page-requisites --no-parent https://kb.itextpdf.com/itext/release-itext-core-9-5-0

ReleaseNotesGenerator/resources/images/signature.png

b Ml

ReleaseNotesGenerator/resources/font/NOTICE.txt

This software uses following fonts under the following licenses:

| Noto Sans Arabic font 			 | OFL-1.1 |

| Noto Sans Gurmukhi font 			 | OFL-1.1 |

| Noto Sans Oriya font 			 | OFL-1.1 |

| Noto Serif Bengali font 			 | OFL-1.1 |

| Noto Serif Devanagari font 			 | OFL-1.1 |

| Noto Serif Gujarati font 			 | OFL-1.1 |

| Noto Serif Hebrew font 			 | OFL-1.1 |

| Noto Serif Kannada font 			 | OFL-1.1 |

| Noto Serif Khmer font 			 | OFL-1.1 |

| Noto Serif Malayalam font 			 | OFL-1.1 |

| Noto Serif Myanmar font 			 	 | OFL-1.1 |

| Noto Serif Tamil font 			 | OFL-1.1 |

| Noto Serif Telugu font 			 | OFL-1.1 |

| Noto Serif Thai font 			 | OFL-1.1 |

| Noto Sans Mono font 							 | OFL-1.1 					|

| Noto Sans font 							 | OFL-1.1 					|

| Noto Sans Canadian Aboriginal font | OFL-1.1 					|

| Noto Emoji font 				 			 | OFL-1.1 					|

--

Dependencies Noto Sans Arabic font, Noto Sans Gurmukhi font, Noto Sans Oriya font, Noto Serif Bengali font, Noto Serif Devanagari font, Noto Serif Gujarati font, Noto Serif Hebrew font, Noto Serif Kannada font, Noto Serif Khmer font, Noto Serif Malayalam font, Noto Serif Myanmar font, Noto Serif Tamil font, Noto Serif Telugu font, Noto Serif Thai font, Noto Sans Mono font, Noto Sans font, Noto Sans Canadian Aboriginal font, Noto Emoji font are used under the following license agreement:

This Font Software is licensed under the SIL Open Font License,

Version 1.1.

This license is copied below, and is also available with a FAQ at:

http://scripts.sil.org/OFL

SIL OPEN FONT LICENSE Version 1.1 - 26 February 2007

PREAMBLE

The goals of the Open Font License (OFL) are to stimulate worldwide

development of collaborative font projects, to support the font

creation efforts of academic and linguistic communities, and to

provide a free and open framework in which fonts may be shared and

improved in partnership with others.

The OFL allows the licensed fonts to be used, studied, modified and

redistributed freely as long as they are not sold by themselves. The

fonts, including any derivative works, can be bundled, embedded,

redistributed and/or sold with any software provided that any reserved

names are not used by derivative works. The fonts and derivatives,

however, cannot be released under any other type of license. The

requirement for fonts to remain under this license does not apply to

any document created using the fonts or their derivatives.

DEFINITIONS

"Font Software" refers to the set of files released by the Copyright

Holder(s) under this license and clearly marked as such. This may

include source files, build scripts and documentation.

"Reserved Font Name" refers to any names specified as such after the

copyright statement(s).

"Original Version" refers to the collection of Font Software

components as distributed by the Copyright Holder(s).

"Modified Version" refers to any derivative made by adding to,

deleting, or substituting -- in part or in whole -- any of the

components of the Original Version, by changing formats or by porting

the Font Software to a new environment.

"Author" refers to any designer, engineer, programmer, technical

writer or other person who contributed to the Font Software.

PERMISSION & CONDITIONS

Permission is hereby granted, free of charge, to any person obtaining

a copy of the Font Software, to use, study, copy, merge, embed,

modify, redistribute, and sell modified and unmodified copies of the

Font Software, subject to the following conditions:

1) Neither the Font Software nor any of its individual components, in

Original or Modified Versions, may be sold by itself.

2) Original or Modified Versions of the Font Software may be bundled,

redistributed and/or sold with any software, provided that each copy

contains the above copyright notice and this license. These can be

included either as stand-alone text files, human-readable headers or

in the appropriate machine-readable metadata fields within text or

binary files as long as those fields can be easily viewed by the user.

3) No Modified Version of the Font Software may use the Reserved Font

Name(s) unless explicit written permission is granted by the

corresponding Copyright Holder. This restriction only applies to the

primary font name as presented to the users.

4) The name(s) of the Copyright Holder(s) or the Author(s) of the Font

Software shall not be used to promote, endorse or advertise any

Modified Version, except to acknowledge the contribution(s) of the

Copyright Holder(s) and the Author(s) or with their explicit written

permission.

5) The Font Software, modified or unmodified, in part or in whole,

must be distributed entirely under this license, and must not be

distributed under any other license. The requirement for fonts to

remain under this license does not apply to any document created using

the Font Software.

TERMINATION

This license becomes null and void if any of the above conditions are

not met.

DISCLAIMER

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT

OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL THE

COPYRIGHT HOLDER BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL

DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF THE USE OR INABILITY TO USE THE FONT SOFTWARE OR FROM

OTHER DEALINGS IN THE FONT SOFTWARE.

ReleaseNotesGenerator/resources/font/NotoEmoji-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSans-Bold.ttf

ReleaseNotesGenerator/resources/font/NotoSans-BoldItalic.ttf

ReleaseNotesGenerator/resources/font/NotoSans-Italic.ttf

ReleaseNotesGenerator/resources/font/NotoSans-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSansArabic-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSansCanadianAboriginal-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSansGurmukhi-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSansMono-Bold.ttf

ReleaseNotesGenerator/resources/font/NotoSansMono-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSansOriya-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSerifBengali-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSerifDevanagari-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSerifGujarati-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSerifHebrew-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSerifKannada-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSerifKhmer-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSerifMalayalam-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSerifMyanmar-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSerifTamil-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSerifTelugu-Regular.ttf

ReleaseNotesGenerator/resources/font/NotoSerifThai-Regular.ttf

ReleaseNotesGenerator/resources/customhtml/custom_content_after_logo.html

 January 8, 2026

 RELEASE NOTES

 This is a special iText PDF

 As per usual, we have decided to create a PDF file that showcases a lot of what is possible with iText by Apryse.

 This is no ordinary PDF, as it is PDF/UA-2 and PDF/A-4F compliant, created with the help of pdfHTML.

 You can read more about it below.

ReleaseNotesGenerator/resources/customhtml/custom_content_at_end.html

 Features of this PDF

 			

 Used pdfHTML to generate the PDF content (the HTML content is attached)

 			

 It is both PDF/A-4f and PDF/UA-2 compliant (making it also a WTPDF)

 			

 There is a MAC protected (AES 256 Encryted, SHA 256 Protected. Password is 'itext') version of this PDF attached (had to be separate, as PDF/A-4 does not allow it)

 			

 Digitally signed using a Portuguese Identity Card (scroll below to check the code on how to validate it!)

 			

 The main logo is generated using iText's custom SVG rendering engine

 			

 Dynamically generated table of contents and bookmarks

 			

 Creatively used Layers to toggle between Java and .NET code below

 			

 Automatic Pagination by using our Events engine

 			

 Fonts were subsetted for a smaller file size

 To run the project (using .NET 8), just check the instructions on the attached file README.md.

 Signed off by:

 Generated by:

 Content: Ian Morris

 Source code: Guust Ysebie

ReleaseNotesGenerator/resources/customhtml/custom_style.html

ReleaseNotesGenerator/resources/customhtml/footer.html

 			

 			

 			

 [image: logo]{)itext

by apryse

 			

 2026
Release Notes

-->

ReleaseNotesGenerator/resources/customhtml/logo.html

ReleaseNotesGenerator/resources/customhtml/logo.png

{)itext

by apryse

ReleaseNotesGenerator/resources/codeSamples/sample1-java.html

 Addendum: Verify the signature using iText (Java)

package com.itextpdf.samples.sandbox.signatures.validation;

import com.itextpdf.kernel.pdf.PdfDocument;

import com.itextpdf.kernel.pdf.PdfReader;

import com.itextpdf.signatures.validation.SignatureValidator;

import com.itextpdf.signatures.validation.ValidatorChainBuilder;

import com.itextpdf.signatures.validation.lotl.LotlCountryCodeConstants;

import com.itextpdf.signatures.validation.lotl.LotlFetchingProperties;

import com.itextpdf.signatures.validation.lotl.LotlService;

import com.itextpdf.signatures.validation.lotl.QualifiedValidator;

import com.itextpdf.signatures.validation.lotl.RemoveOnFailingCountryData;

import com.itextpdf.signatures.validation.report.ValidationReport;

import java.io.IOException;

import java.util.Map;

public class LotlSimpleSignatureValidation {

 public static final String SRC = "./src/main/resources/pdfs"

 + "/super_official_document_signed.pdf";

 public static void main(String[] args) throws IOException {

 ValidatorChainBuilder builder = new ValidatorChainBuilder();

 builder.trustEuropeanLotl(true);

 LotlFetchingProperties fetchingProperties = new LotlFetchingProperties(

 new RemoveOnFailingCountryData());

 // Add other country codes if needed

 fetchingProperties.setCountryNames(LotlCountryCodeConstants.PORTUGAL);

 LotlService.initializeGlobalCache(fetchingProperties);

 // To perform Qualification validation, provide QualifiedValidator instance.

 // You can use this same instance to obtain the results after validation.

 QualifiedValidator qualifiedValidator = new QualifiedValidator();

 builder.withQualifiedValidator(qualifiedValidator);

 try (PdfDocument document = new PdfDocument(new PdfReader(SRC))) {

 SignatureValidator validator = builder.buildSignatureValidator(document);

 ValidationReport report = validator.validateSignatures();

 // Separately, now you can obtain Qualification results

 Map<String, QualifiedValidator.QualificationValidationData> result =

 qualifiedValidator.obtainAllSignaturesValidationResults();

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 }

}

ReleaseNotesGenerator/resources/codeSamples/sample1-sharp.html

 Addendum: Verify the signature using iText (C#)

using System;

using System.Collections.Generic;

using iText.Kernel.Pdf;

using iText.Signatures.Validation;

using iText.Signatures.Validation.Lotl;

using iText.Signatures.Validation.Report;

namespace iText.Samples.Sandbox.Signatures.Validation {

 public class LotlSimpleSignatureValidation {

 public static readonly string SRC = "./path/to/pdf/some.pdf";

 public static void Main(String[] args) {

 ValidatorChainBuilder builder = new ValidatorChainBuilder();

 builder.TrustEuropeanLotl(true);

 LotlFetchingProperties fetchingProperties = new LotlFetchingProperties(

 new RemoveOnFailingCountryData());

 // Add other country codes if needed

 fetchingProperties.SetCountryNames(LotlCountryCodeConstants.PORTUGAL);

 LotlService.InitializeGlobalCache(fetchingProperties);

 // If you want to additionally perform Qualification validation, you need to

 // provide QualifiedValidator instance. You can use this same instance to

 // obtain the results after validation.

 QualifiedValidator qualifiedValidator = new QualifiedValidator();

 builder.WithQualifiedValidator(qualifiedValidator);

 using (PdfDocument document = new PdfDocument(new PdfReader(SRC))) {

 SignatureValidator validator = builder.BuildSignatureValidator(document);

 ValidationReport report = validator.ValidateSignatures();

 // Separately, now you can obtain Qualification results

 Map<String, QualifiedValidator.QualificationValidationData> result =

 qualifiedValidator.ObtainAllSignaturesValidationResults();

 }

 }

 }

}

		2026-01-08T17:46:04+0100
	Ghent (Belgium)
	Release notes for iText 9.5.0

